Handicapping 101
 What Every Club Sailor Should Know in 101 Slides

Matt Draisey matt@draisey.ca
South Port Sailing Club www.southportsailingclub.com

August $8^{\text {th }}, 2018$
(1) Handicapping as Prediction

- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

Modern Handicapping

Based on Absolute Units rather than a Standard Boat

- modern measurement rules are based on predicted boat speed across a wide range of wind speeds and many points of sail.
- the handicapping authority uses a velocity prediction programme (a vpp).
- performance rules are based on relative performance data.
- yet we can still infer absolute performance in the main.
- and they are more readily understood in terms of absolute performance
- we apply handicaps to boats based on a prediction of their relative performance.
- it is trivial to deduce relative performance from absolute performance.

Modern Handicapping

Based on Absolute Units rather than a Standard Boat

- modern measurement rules are based on predicted boat speed across a wide range of wind speeds and many points of sail.
- the handicapping authority uses a velocity prediction programme (a vpp).
- performance rules are based on relative performance data.
- yet we can still infer absolute performance in the main.
- and they are more readily understood in terms of absolute performance.
- we apply handicaps to boats based on a prediction of their relative performance.
- it is trivial to deduce relative performance from absolute performance.

Modern Handicapping

Based on Absolute Units rather than a Standard Boat

- modern measurement rules are based on predicted boat speed across a wide range of wind speeds and many points of sail.
- the handicapping authority uses a velocity prediction programme (a vpp).
- performance rules are based on relative performance data.
- yet we can still infer absolute performance in the main.
- and they are more readily understood in terms of absolute performance.
- we apply handicaps to boats based on a prediction of their relative performance.
- it is trivial to deduce relative performance from absolute performance.

Old-Fashioned Measurement Rules

- old measurement rules were based on empirical formulas.
- many inputs might have been included in these empirical formulas but there is no comparison to a modern vpp.
- old-style empirical formulas are type-forming.
- they are no longer used in handicap racing.
- only a shadow of these formulas exist today in development classes.
- the empirical formula would yield a rated length.
- from this rated length another empirical formula would yield a time-on-distance (here) or a time-on-time (elsewhere) handicap.
- and this handicap was always relative to a standard boat

Old-Fashioned Performance Rules

- performance rules directly issue a handicap.
- the handicap is time-on-distance (here) or time-on-time (here \& elsewhere).
- the handicap is always relative to a standard boat.
- older performance rules may be still relevant today.
- they have an extensive collection of performance data.
- handicapping authorities don't collect performance data for a single boat.
- the handicapping authority can make predictions for of a boat:
- which already belongs to a class association;
- which conforms to a manufacturer's standard;
- which differs from an already handicapped boat in certain predictable ways.

Modern Handicapping with Multi-Factor Handicaps

- multi-factor or vpp-based handicaps can be specialized to the course configuration and the conditions on the day:
- offshore, around-the-buoys or windward/leeward;
- or \% beating : \% reaching : \% running;
- with or against the current;
- using predicted wind speeds, or...
- multi-factor handicaps may adapt to wind strength automatically based on elapsed times.

Modern Handicapping with Multi-Factor Handicaps

- multi-factor or vpp-based handicaps can be specialized to the course configuration and the conditions on the day:
- offshore, around-the-buoys or windward/leeward;
- or \% beating : \% reaching : \% running;
- with or against the current;
- using predicted wind speeds, or...
- multi-factor handicaps may adapt to wind strength automatically based on elapsed times.

Modern Handicapping with Single-Factor Handicaps

- in club racing we use single-factor handicaps that limit the precision of our predictions.
- single-factor handicaps aggregate performance data.
- courses need to conform to the \% beating : \% reaching : \% running as specified by the rule or results will be skewed.
- currents can severely distort the handicapping.
- on a particular day wind speeds can be strongly predictive of results.
- single-factor handicans cannot adant to wind strength at allat best handicapping will average out over a series of races.
- a poorly localized handicap may not even average out over a series of races.

Modern Handicapping with Single-Factor Handicaps

- in club racing we use single-factor handicaps that limit the precision of our predictions.
- single-factor handicaps aggregate performance data.
- courses need to conform to the \% beating: \% reaching : \% running as specified by the rule or results will be skewed.
- currents can severely distort the handicapping.
- on a particular day wind speeds can be strongly predictive of results.
- single-factor handicaps cannot adapt to wind strength at all;
at best handicapping will average out over a series of races.
- a poorly localized handicap may not even average out over a series of races.

Modern Handicapping with Single-Factor Handicaps

- in club racing we use single-factor handicaps that limit the precision of our predictions.
- single-factor handicaps aggregate performance data.
- courses need to conform to the \% beating: \% reaching : \% running as specified by the rule or results will be skewed.
- currents can severely distort the handicapping.
- on a particular day wind speeds can be strongly predictive of results.
- single-factor handicaps cannot adapt to wind strength at all; at best handicapping will average out over a series of races.
- a poorly localized handicap may not even average out over a series of races.
(1) Handicapping as Prediction
- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

The Rule Book's Corrected Time
 Although the Rule Book Itself Doesn't Actually Define Corrected Time (cf. RRS A3 and A7)

- the rule book requires us to rank finishers by corrected time.
- corrected time is defined in terms of a "scratch" type of boat.
- the scratch boat is representative of the fleet.
- the choice of scratch boat doesn't actually alter how boats place.
- corrected time is also a prediction
- it is a prediction of how a boat, given its elapsed time, would finish were it of the scratch type.
- provides a pretense of one-design racing of scratch type boats.

The Rule Book's Corrected Time
 Although the Rule Book Itself Doesn't Actually Define Corrected Time (cf. RRS A3 and A7)

- the rule book requires us to rank finishers by corrected time.
- corrected time is defined in terms of a "scratch" type of boat.
- the scratch boat is representative of the fleet.
- the choice of scratch boat doesn't actually alter how boats place.
- corrected time is also a prediction
- it is a prediction of how a boat, given its elapsed time, would finish were it of the scratch type.
- provides a pretense of one-design racing of scratch type boats.

The Rule Book's Corrected Time
 Although the Rule Book Itself Doesn't Actually Define Corrected Time (cf. RRS A3 and A7)

- the rule book requires us to rank finishers by corrected time.
- corrected time is defined in terms of a "scratch" type of boat.
- the scratch boat is representative of the fleet.
- the choice of scratch boat doesn't actually alter how boats place.
- corrected time is also a prediction
- it is a prediction of how a boat, given its elapsed time, would finish were it of the scratch type.
- provides a pretense of one-design racing of scratch type boats.

The Rule Book's Corrected Time
 Although the Rule Book Itself Doesn't Actually Define Corrected Time (cf. RRS A3 and A7)

- the rule book requires us to rank finishers by corrected time.
- corrected time is defined in terms of a "scratch" type of boat.
- the scratch boat is representative of the fleet.
- the choice of scratch boat doesn't actually alter how boats place.
- corrected time is also a prediction.
- it is a prediction of how a boat, given its elapsed time, would finish were it of the scratch type.
- provides a pretense of one-design racing of scratch type boats.

The Rule Book's Corrected Time
 Although the Rule Book Itself Doesn't Actually Define Corrected Time (cf. RRS A3 and A7)

- the rule book requires us to rank finishers by corrected time.
- corrected time is defined in terms of a "scratch" type of boat.
- the scratch boat is representative of the fleet.
- the choice of scratch boat doesn't actually alter how boats place.
- corrected time is also a prediction.
- it is a prediction of how a boat, given its elapsed time, would finish were it of the scratch type.
- provides a pretense of one-design racing of scratch type boats.

Caveats with regard to Corrected Time

The Scratch Boat need not be Representative of the Fleet!

- the PHRF zero-rated boat was originally chosen to be the fastest possible boat so all PHRF handicaps would be positive.
- calculating PHRF time-on-distance corrected times with the zero-rated boat as scratch leads to an extremely simple formula.
- this is the how PHRF was conceived.
- for most club boats elapsed times and corrected times are very dissimilar.
- comparing such corrected times between divisions is easy but largely pointless.

Caveats with regard to Corrected Time

The Choice of Scratch Boat may alter How Boats Place

- but only if a rounding rule is specified by the class rules.
- a rounding rule, whatever the scratch boat, can never flip how boats place.
- without rounding, ties on corrected time are uncommon.
- untied boats without rounding can become tied with rounding.
- whether boats round to a tie depends on the choice of scratch boat.
- rounding is a hangover from the days when corrected times were calculated by hand; rounding is old-fashioned.
- a strict ordering with rounding implies the same strict ordering without.
- rounding complicates the reckoning of time allowances by competitors on the water.

Some Common Corrected Time Formulas

PHRF e.g. $\check{t}=t-h \times d$

- time-on-distance
- handicap h is in units of seconds per mile from about 0 to 250 .

IRC e.g. $\check{t}=t \times b$

- time-on-time
- handicap b is a unitless multiplier near 1.000
- these formulas do not reflect best practices.
- the choice of scratch boat is baked into the handicap.
- the handicap has no obvious physical interpretation.

Some Common Corrected Time Formulas

PHRF e.g. $\check{t}=t-h \times d$

- time-on-distance
- handicap h is in units of seconds per mile from about 0 to 250 .

IRC e.g. $\check{\check{t}}=t \times b$

- time-on-time
- handicap b is a unitless multiplier near 1.000.
- these formulas do not reflect best practices.
- the choice of scratch boat is baked into the handicap
- the handicap has no obvious physical interpretation.

Some Common Corrected Time Formulas

$$
\text { PHRF e.g. } \check{t}=t-h \times d
$$

- time-on-distance
- handicap h is in units of seconds per mile from about 0 to 250 .

$$
\text { IRC e.g. } \check{\check{t}}=t \times b
$$

- time-on-time
- handicap b is a unitless multiplier near 1.000.
- these formulas do not reflect best practices.
- the choice of scratch boat is baked into the handicap.
- the handicap has no obvious physical interpretation.

Time-on-Distance

- corrected time is explicitly dependent on course length.
- an incorrect course length will invalidate the results.
- shortened courses must be accounted for.
- corrected time is calculated with respect to elapsed time
so is dependent on start times.
- however an incorrect start time will not invalidate the results.
- reformulating corrected time in terms of time-of-day rather than elapsed time is easy.

Time-on-Distance

- corrected time is explicitly dependent on course length.
- an incorrect course length will invalidate the results.
- shortened courses must be accounted for.
- corrected time is calculated with respect to elapsed time so is dependent on start times.
- however an incorrect start time will not invalidate the results.
- reformulating corrected time in terms of time-of-day rather than elapsed time is easy.

Introduction to Handicapping

Time-on-Time

- corrected time is independent of course length.
- an incorrect start time will invalidate results.
- elapsed times must be taken from a boat's starting signal or its calculated corrected time is meaningless.
- different divisions will have different start times.
- postponements, general recalls or other occurrences can delay start times.
- time elapsed from the first warning signal is only meaningful if the starting signal is recorded on the same clock as finish times - elapsed time will be the difference of the two - time-of-day works just as well for this purpose.
- it is impossible to reformulate corrected time in terms of time-of-day.

Time-on-Time

- corrected time is independent of course length.
- an incorrect start time will invalidate results.
- elapsed times must be taken from a boat's starting signal or its calculated corrected time is meaningless.
- different divisions will have different start times.
- postponements, general recalls or other occurrences can delay start times.
- time elapsed from the first warning signal is only meaningful if the starting signal is recorded on the same clock as finish times - elapsed time will be the difference of the two - time-of-day works just as well for this purpose.
- it is impossible to reformulate corrected time in terms of time-of-day.

Time-on-Distance and Time-on-Time

- time-on-distance and time-on-time are the only sensible alternatives for single-factor handicapping.
- either implicitly models how the relative performance between any two boats should vary as the wind varies.
- A single-factor handicap lacks the information needed to specify how a particular boat actually responds to changes in the wind.
- time-on-time is generally more predictive than time-on-distance.

Time-on-Distance and Time-on-Time

- time-on-distance and time-on-time are the only sensible alternatives for single-factor handicapping.
- either implicitly models how the relative performance between any two boats should vary as the wind varies.
- A single-factor handicap lacks the information needed to specify how a particular boat actually responds to changes in the wind.
- time-on-time is generally more predictive than time-on-distance.

Time-on-Distance and Time-on-Time

- time-on-distance and time-on-time are the only sensible alternatives for single-factor handicapping.
- either implicitly models how the relative performance between any two boats should vary as the wind varies.
- A single-factor handicap lacks the information needed to specify how a particular boat actually responds to changes in the wind.
- time-on-time is generally more predictive than time-on-distance.

Multi-Factor Specialized to Single-Factor Handicaps

- depending on the wind, many multi-factor handicaps specialize down to a single-factor time-on-distance or time-on-time handicap before racing.
- once specialized to a wind range there is little difference in predicted performance between time-on-distance and time-on-time handicapping unless the wind dramatically departs from the expected wind.

Multi-Factor Specialized to Single-Factor Handicaps

- depending on the wind, many multi-factor handicaps specialize down to a single-factor time-on-distance or time-on-time handicap before racing.
- once specialized to a wind range there is little difference in predicted performance between time-on-distance and time-on-time handicapping unless the wind dramatically departs from the expected wind.

Time-on-Time-and-Distance and Performance Curves

- time-on-time-and-distance generalizes both time-on-distance and time-on-time.
- it uses two factors while racing.
- and it is still amenable to mental arithmetic on the water.
- a performance curve generalizes even more.
- six factors is the most common parametrization.
- it is not suitable for mental arithmetic.
- it requires preprinted time allowance tables or on-board computerization.
- either an incorrect start time or an incorrect course length will invalidate the results.

Time-on-Time-and-Distance and Performance Curves

- time-on-time-and-distance generalizes both time-on-distance and time-on-time.
- it uses two factors while racing.
- and it is still amenable to mental arithmetic on the water.
- a performance curve generalizes even more.
- six factors is the most common parametrization.
- it is not suitable for mental arithmetic.
- it requires preprinted time allowance tables or on-board computerization.
- either an incorrect start time or an incorrect course length will invalidate the results.

Time-on-Time-and-Distance and Performance Curves

- time-on-time-and-distance generalizes both time-on-distance and time-on-time.
- it uses two factors while racing.
- and it is still amenable to mental arithmetic on the water.
- a performance curve generalizes even more.
- six factors is the most common parametrization.
- it is not suitable for mental arithmetic.
- it requires preprinted time allowance tables or on-board computerization.
- either an incorrect start time or an incorrect course length will invalidate the results.
(1) Handicapping as Prediction
- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

Excursus on Pace versus Speed

- course-average pace p is elapsed time t divided by course length d.
- pace in general is the time in seconds needed to cover one mile
- pace takes units of seconds per mile.
- sneed is how many miles covered in 3600 seconds.
- speed takes units of miles per hour (knots)
- pace and speed are reciprocal to each other.
- multiplying the pace by the corresponding speed yields unity,
- where unity is 3600 seconds per hour.
- pace and speed are different representations of the same physical quantity.

Excursus on Pace versus Speed

- course-average pace p is elapsed time t divided by course length d.
- pace in general is the time in seconds needed to cover one mile.
- pace takes units of seconds per mile.
- speed is how many miles covered in 3600 seconds.
- speed takes units of miles per hour (knots)
- pace and speed are reciprocal to each other
- multiplying the pace by the corresponding speed yields unity,
- where unity is 3600 seconds per hour.
- pace and speed are different representations of the same physical quantity.

Excursus on Pace versus Speed

- course-average pace p is elapsed time t divided by course length d.
- pace in general is the time in seconds needed to cover one mile.
- pace takes units of seconds per mile.
- speed is how many miles covered in 3600 seconds.
- speed takes units of miles per hour (knots).
- pace and speed are reciprocal to each other.
- multiplying the pace by the corresponding speed yields unity,
- where unity is 3600 seconds per hour.
- pace and speed are different representations of the same physical quantity.

Excursus on Pace versus Speed

- course-average pace p is elapsed time t divided by course length d.
- pace in general is the time in seconds needed to cover one mile.
- pace takes units of seconds per mile.
- speed is how many miles covered in 3600 seconds.
- speed takes units of miles per hour (knots).
- pace and speed are reciprocal to each other.
- multiplying the pace by the corresponding speed yields unity,
- where unity is 3600 seconds per hour.
- pace and speed are different representations of the same physical quantity.

Excursus on Pace versus Speed

- course-average pace p is elapsed time t divided by course length d.
- pace in general is the time in seconds needed to cover one mile.
- pace takes units of seconds per mile.
- speed is how many miles covered in 3600 seconds.
- speed takes units of miles per hour (knots).
- pace and speed are reciprocal to each other.
- multiplying the pace by the corresponding speed yields unity,
- where unity is 3600 seconds per hour.
- pace and speed are different representations of the same physical quantity.

Single-Factor Corrected Time| Pace Formulas in General

Time-on-Distance with Handicaps Denoted hor c

$$
\check{t}=t+\left[{ }^{\star} h-h\right] \times d \quad \check{\check{t}}=t+\left[c-{ }^{\star} c\right] \times d
$$

Time-on-Time with Positive Handicaps Denoted k or b

$$
\check{\check{t}}=t \times\left[{ }^{\star} k \div k\right]
$$

$$
\check{\check{t}}=t \times\left[b \div \star^{\star} b\right]
$$

- the h and k handicaps increase as boats get slower.
- the b and c handicaps increase as boats get faster. if we divide both sides of our equations by course length...

Single-Factor Corrected Time|Pace Formulas in General

Time-on-Distance with Handicaps Denoted hor c

$$
\check{p}=p+\left[{ }^{\star} h-h\right] \quad \check{p}=p+\left[c-{ }^{\star} c\right]
$$

Time-on-Time with Positive Handicaps Denoted k or b

$$
\check{\check{p}}=p \times[\star k \div k] \quad \check{\rho}=p \times\left[b \div \star_{b}\right]
$$

- the h and k handicaps increase as boats get slower.
- the b and c handicaps increase as boats get faster.
...having dividing both sides of our equations by course length...

Single-Factor Corrected Time|Pace Formulas in General

Time-on-Distance with Handicaps Denoted hor c

$$
\check{p}=(p-h)+\star_{h} \quad \check{p}=(p+c)-\star_{C}
$$

Time-on-Time with Positive Handicaps Denoted k or b

$$
\check{\check{p}}=(p \div k) \times^{\star} k \quad \check{\check{p}}=(p \times b) \div{ }^{\star} b
$$

- the h and k handicaps increase as boats get slower.
- the b and c handicaps increase as boats get faster.

> ...and having expressed them in a canonical form

Comparison on Corrected Time via Canonical Pace Formulas

Via Formula $\check{\sim}=(p-h)+\star h$

$$
\begin{aligned}
\check{t}^{\mathrm{A}} & \lessgtr \check{t}^{\mathrm{B}} \\
\check{p}^{\mathrm{A}} & \lessgtr \check{p}^{\mathrm{B}} \\
\left(p^{\mathrm{A}}-h^{\mathrm{A}}\right)+{ }^{\star} h & \lessgtr\left(p^{\mathrm{B}}-h^{\mathrm{B}}\right)+{ }^{\star} h \\
p^{\mathrm{A}}-h^{\mathrm{A}} & \lessgtr p^{\mathrm{B}}-h^{\mathrm{B}}
\end{aligned}
$$

Via Formula $\check{p}=(p \div k) \times{ }^{\star} k$

$$
\begin{aligned}
\check{t}^{\mathrm{A}} & \lessgtr \check{t}^{\mathrm{B}} \\
\check{\breve{p}}^{\mathrm{A}} & \lessgtr \check{p}^{\mathrm{B}} \\
\left(p^{\mathrm{A}} \div k^{\mathrm{A}}\right) \times{ }^{\star} k & \lessgtr\left(p^{\mathrm{B}} \div k^{\mathrm{B}}\right) \times \star^{\star} k \\
p^{\mathrm{A}} \div k^{\mathrm{A}} & \lessgtr p^{\mathrm{B}} \div k^{\mathrm{B}}
\end{aligned}
$$

- comparison on corrected pace is the same as comparison on corrected time,
- and independent of the scratch handicap.

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{p}=(p-h)+\star_{h}=(p+c)-\star_{c}
$$

Time-on-Time

$$
\check{p}=(p \div k) \times \star k \quad=(p \times b) \div \star b
$$

- the forms in c and b are redundant.
- the corresponding h and c add to zero.
- the corresponding k and b multiply to one.

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{\check{p}} \quad=(p-h)+{ }^{\star} h
$$

Time-on-Time

$$
\check{\check{p}} \quad=(p \div k) \times \star k
$$

- can rewrite the remaining forms in h and k to reveal even more redundancy.
- algebraically manipulate the right-hand side of these equations.
- to reveal an arbitrary choice of handicapping gauge.

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{\check{p}} \quad=(p-h)+\star_{h}=p-[h-\star h]
$$

Time-on-Time

$$
\check{p}=(p \div k) \times \star k \quad=p \div\left[k \div \star_{k}\right]
$$

- can rewrite the remaining forms in h and k to reveal even more redundancy.
- algebraically manipulate the right-hand side of these equations.
- to reveal an arbitrary choice of handicapping gauge.

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{\check{p}}=(p-h)+\star h=p-[(h-\star h)-(\star h-\star h)]
$$

Time-on-Time

$$
\check{p}=(p \div k) \times \star k \quad=p \div\left[(k \div \star k) \div\left({ }^{\star} k \div \star k\right)\right]
$$

- by telescoping the differences/ratios of handicaps.
- e.g. handicaps relative to a standard boat with ${ }^{*} h$ or $* k$ in this gauge.
- shifted $h \rightarrow h_{\star}$ or scaled $k \rightarrow k_{\star}$

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{p}=(p-h)+\star h \quad=p-\left[h_{\star}-\star h_{\star}\right]
$$

Time-on-Time

$$
\check{p}=(p \div k) \times \star k=p \div\left[k_{\star} \div \star_{k_{\star}}\right]
$$

- by telescoping the differences/ratios of handicaps.
- e.g. handicaps relative to a standard boat with ${ }^{*} h$ or $* k$ in this gauge.
- shifted $h \rightarrow h_{\star}$ or scaled $k \rightarrow k_{\star}$ are transformed but equivalent handicaps.

Single-Factor Corrected Pace Without Loss of Generality

Time-on-Distance

$$
\check{\check{p}} \quad=(p-h)+\star h \quad=\left(p-h_{\star}\right)+\star h_{\star}
$$

Time-on-Time

$$
\check{p}=(p \div k) \times \star k=\left(p \div k_{\star}\right) \times \star k_{\star}
$$

- by telescoping the differences/ratios of handicaps.
- e.g. handicaps relative to a standard boat with *h or *k in this gauge.
- shifted $h \rightarrow h_{\star}$ or scaled $k \rightarrow k_{\star}$ are transformed but equivalent handicaps.

Too Many Handicaps

Too Much Generality?

- there are too many ways to express the same handicapping relationship.
- there are different handicaps for time-on-distance and time-on-time.

One Preferred Handicap - the General Purpose Handicap..

- is a single factor in units of pace for either time-on-distance or time-on-time;
- has an actual physical interpretation as aggregated average pace.
- as an absolute measure of performance rather than relative to another boat,
- and has an equivalent aggregated average speed in knots.

Too Many Handicaps

Too Much Generality?

- there are too many ways to express the same handicapping relationship.
- there are different handicaps for time-on-distance and time-on-time.

```
One Preferred Handicap - the General Purpose Handicap.
    - is a single factor in units of pace for either time-on-distance or time-on-time;
    - has an actual physical interpretation as aggregated average pace.
    - as an absolute measure of performance rather than relative to another boat,
    - and has an equivalent aggregated average speed in knots
```


Too Many Handicaps

Too Much Generality?

- there are too many ways to express the same handicapping relationship.
- there are different handicaps for time-on-distance and time-on-time.

One Preferred Handicap - the General Purpose Handicap...

- is a single factor in units of pace for either time-on-distance or time-on-time;
- has an actual physical interpretation as aggregated average pace.
- as an absolute measure of performance rather than relative to another boat,
- and has an equivalent aggregated average speed in knots.

Too Many Handicaps

Too Much Generality?

- there are too many ways to express the same handicapping relationship.
- there are different handicaps for time-on-distance and time-on-time.

One Preferred Handicap - the General Purpose Handicap...

- is a single factor in units of pace for either time-on-distance or time-on-time;
- has an actual physical interpretation as aggregated average pace...
- as an absolute measure of performance rather than relative to another boat,
- and has an equivalent aggregated average speed in knots.

Applying a General Purpose Handicap

Time-on-Distance with a General Purpose Handicap g

$$
\check{p}=(p-g)+\star g \quad \check{t}=t+[\star g-g] \times d
$$

Time-on-Time with the Same General Purpose Handicap

$$
\check{\rho}=(p \div g) \times \star g \quad \check{\check{t}}=t \times[\star g \div g]
$$

- the general purpose handicap g supplants the h and k in the formulas.
- it works for any time-on-distance or time-on-time handicapping.
- it gives context to handicaps which are otherwise opaque.

Applying a General Purpose Handicap

Time-on-Distance with a General Purpose Handicap g

Time-on-Time with the Same General Purpose Handicap

$$
[\star g \div g]
$$

- it gives context to handicaps which are otherwise opaque...
- but precomputing the bracketed term obscures that context.
- PHRF and IRC handicaps can be considered such a precomputed expression.
- determining the GPH for a single boat recovers the GPH for all boats.

Applying a General Purpose Handicap

Time-on-Distance with a General Purpose Handicap g

$$
\check{p}=(p-g)+{ }^{\star} g \quad \check{t}=t+[\star g-g] \times d
$$

Time-on-Time with the Same General Purpose Handicap

$$
\check{p}=(p \div g) \times \star g \quad \check{t}=t \times[\star g \div g]
$$

- it gives context to handicaps which are otherwise opaque...
- but precomputing the bracketed term obscures that context.
- PHRF and IRC handicaps can be considered such a precomputed expression.
- determining the GPH for a single boat recovers the GPH for all boats.

A PHRF Handicap for Time-on-Time

- a PHRF rating h is the difference in GPH from that of the zero-rated boat:
- $h=g-$ zero-rated .
- to recover the GPH for time-on-time handicapping:
- zero-rated g is about $600 \mathrm{~s} / \mathrm{mi} \pm 100 \mathrm{~s} / \mathrm{mi}$ depending on local conditions, - e.g. $g=h+600 \mathrm{~s} / \mathrm{mi}$;
- $\Delta g=\Delta h$.
- a PHRF station pursuing time-on-time handicapping will publish: sensibly its value for ${ }^{\text {zero-rated }} g$; misguidedly a transformation $h \rightarrow b$ hiding zero-rated g in the formula.

A PHRF Handicap for Time-on-Time

- a PHRF rating h is the difference in GPH from that of the zero-rated boat:
- $h=g-$ zero-rated g.
- to recover the GPH for time-on-time handicapping:
- zero-rated g is about $600 \mathrm{~s} / \mathrm{mi} \pm 100 \mathrm{~s} / \mathrm{mi}$ depending on local conditions,
- e.g. $g=h+600 \mathrm{~s} / \mathrm{mi}$;
- a PHRF station pursuing time-on-time handicapping will publish:
sensibly its value for ${ }^{\text {zero-rated }} g$;
misguidedly a transformation $h \rightarrow b$ hiding zero-ratedg in the formula.

A PHRF Handicap for Time-on-Time

- a PHRF rating h is the difference in GPH from that of the zero-rated boat:
- $h=g-$ zero-rated g.
- to recover the GPH for time-on-time handicapping:
- zero-rated g is about $600 \mathrm{~s} / \mathrm{mi} \pm 100 \mathrm{~s} / \mathrm{mi}$ depending on local conditions,
- e.g. $g=h+600 \mathrm{~s} / \mathrm{mi}$;
- $\Delta g=\Delta h$.
- a PHRF station pursuing time-on-time handicapping will publish: sensibly its value for ${ }^{\text {zero-rated }} g$;
misguidedly a transformation $h \rightarrow b$ hiding zero-ratedg in the formula.

A PHRF Handicap for Time-on-Time

- a PHRF rating h is the difference in GPH from that of the zero-rated boat:
- $h=g$ - zero-rated g.
- to recover the GPH for time-on-time handicapping:
- zero-rated g is about $600 \mathrm{~s} / \mathrm{mi} \pm 100 \mathrm{~s} / \mathrm{mi}$ depending on local conditions,
- e.g. $g=h+600 \mathrm{~s} / \mathrm{mi}$;
- $\Delta g=\Delta h$.
- a PHRF station pursuing time-on-time handicapping will publish:
sensibly its value for ${ }^{\text {zero-rated }} g$;
misguidedly a transformation $h \rightarrow b$ hiding ${ }^{\text {zero-rated } g}$ in the formula.

A Transformation $h \rightarrow b$ Hiding zero-ratedg in the Formula

For Lake St. Clair

standard $_{g}$ and ${ }^{\text {zero-rated }} g$ are fixed parameters
${ }^{\text {our }} h$ is our PHRF rating ${ }^{\text {our }} g$ is the corresponding GPH
${ }^{\text {our }} b$ is the corresponding time correction factor

$$
{ }^{\text {our }} b=\underbrace{\overbrace{650 \mathrm{~s} / \mathrm{mi}}^{\text {standard } g}}_{\text {ourg }^{\underbrace{557 \mathrm{~s} / \mathrm{mi}}_{\text {zero-rated } g}+{ }^{\text {our }} h}}
$$

- boats aren't as fast on average as the low ${ }^{\text {zero-rated }} \mathrm{g}$ would suggest.
- for our purposes, this inconsistency is irrelevant.
- we must accept the handicapping as is

A Transformation $h \rightarrow b$ Hiding zero-ratedg in the Formula

For Lake St. Clair

${ }^{\text {standard }} g$ and ${ }^{\text {zero-rated }} g$ are fixed parameters
${ }^{\text {our }} h$ is our PHRF rating ${ }^{{ }^{o u r} g}$ is the corresponding GPH
${ }^{\circ}{ }^{\circ} \mathrm{b} b$ is the corresponding time correction factor

- boats aren't as fast on average as the low ${ }^{\text {zero-rated }} g$ would suggest.
- for our purposes, this inconsistency is irrelevant.
- we must accept the handicapping as is.
(1) Handicapping as Prediction
- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

General Purpose Handicaps for Sample Boats

Boat	g	Δg	Make
Hurricane	$729(12: 09)$	$-132(2: 12)$	Melges 24
Winged Elephant	$810(13: 30)$	-51	Wavelength 24
Mechanical Drone	$834(13: 54)$	-27	C\&C 30
Shindig	$861(14: 21)$	\circ	Viking 28
the Professor	$864(14: 24)$	+3	J 22
Rhumb Punch	$876(14: 36)$	+15	Mirage 33

these handicaps are rounded to the closest multiple of $3 \mathrm{~s} / \mathrm{m}$.

Graphing Time-on-Distance side-by-side with Time-on-Time

Sample Boats
Introduction to Time Allowances
Reckoning Time Allowances from Our Boat's Point of View

An Excursus on Graphing Time-on-Time-and-Distance

Response to the wind strength:

- for single-factor handicaps is embedded in the model;
- for time-on-time-and-distance is contained in the handicap.
(1) Handicapping as Prediction
- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

Time and Pace Allowances

Defined from Our Perspective

From Our Perspective for a Given Competitor

- a time allowance Δt is the time ahead or behind us the competitor must finish in order to tie with us after handicapping is applied.
- a pace allowance Δp is a difference in pace necessary for a tie.
- multiplication by course length connects:
- our pace p to our elapsed time t :
- a pace allowance Δp to a time allowance Δt.

Time and Pace Allowances

Defined from Our Perspective

From Our Perspective for a Given Competitor

- a time allowance Δt is the time ahead or behind us the competitor must finish in order to tie with us after handicapping is applied.
- a pace allowance Δp is a difference in pace necessary for a tie.
- multiplication by course length connects:
- our pace p to our elapsed time t;
- a pace allowance Δp to a time allowance Δt.

Time and Pace Allowances

Defined from Our Perspective

From Our Perspective for a Given Competitor

- a time allowance Δt is the time ahead or behind us the competitor must finish in order to tie with us after handicapping is applied.
- a pace allowance Δp is a difference in pace necessary for a tie.
- multiplication by course length connects:
- our pace p to our elapsed time t;
- a pace allowance Δp to a time allowance Δt.

Time and Pace Allowances

Defined from Our Perspective

From Our Perspective for a Given Competitor

- a time allowance Δt is the time ahead or behind us the competitor must finish in order to tie with us after handicapping is applied.
- a pace allowance Δp is a difference in pace necessary for a tie.
- multiplication by course length connects:
- our pace p to our elapsed time t;
- a pace allowance Δp to a time allowance Δt.

Time and Pace Allowances

From Our Perspective for a Given Competitor

Time-on-Distance

- pace allowance for a competitor Δp is Δg
- the corresponding time allowance is fixed throughout the race.

Time-on-Time
e the ratio of Δp to Δg is equal in proportion to the ratio of p to g.

- we can turn a pace allowance into a time allowance by dropping per-mile from all the units in the proportionality,
- because time-on-time handicapping is independent of distance.

Time and Pace Allowances

From Our Perspective for a Given Competitor

Time-on-Distance

- pace allowance for a competitor Δp is Δg
- the corresponding time allowance is fixed throughout the race.

Time-on-Time

- the ratio of Δp to Δg is equal in proportion to the ratio of p to g.
- we can turn a pace allowance into a time allowance by dropping per-mile from all the units in the proportionality,
- because time-on-time handicapping is independent of distance.

Our Boat Shindig with Handicap $g=861 \mathrm{~s} / \mathrm{mi} . .$.

In General

- we have $g=861 \mathrm{~s} / \mathrm{mi}=14 \mathrm{~min} 21 \mathrm{~s} / \mathrm{mi}$.
- on average we should take:
- $861 \mathrm{~s}=14 \mathrm{~min} 21 \mathrm{~s}$ to complete a mile of the course;
- $287 \mathrm{~s}=4 \mathrm{~min} 47 \mathrm{~s}$ to complete a third of a mile;

For a $41 / 3$ mi Long Course

- we add the expected elapsed time over 4 mi to that over $1 / 3 \mathrm{mi}$.

Our Boat Shindig with Handicap $g=861 \mathrm{~s} / \mathrm{mi} . .$.

In General

- we have $g=861 \mathrm{~s} / \mathrm{mi}=14 \mathrm{~min} 21 \mathrm{~s} / \mathrm{mi}$.
- on average we should take:
- $861 \mathrm{~s}=14 \mathrm{~min} 21 \mathrm{~s}$ to complete a mile of the course;
- $287 \mathrm{~s}=4 \mathrm{~min} 47 \mathrm{~s}$ to complete a third of a mile;

For a $41 / 3$ mi Long Course

- we add the expected elapsed time over 4 mi to that over $1 / 3 \mathrm{mi}$.

Our Boat Shindig with Handicap $g=861 \mathrm{~s} / \mathrm{mi} . .$.

In General

- we have $g=861 \mathrm{~s} / \mathrm{mi}=14 \mathrm{~min} 21 \mathrm{~s} / \mathrm{mi}$.
- on average we should take:
- $861 \mathrm{~s}=14 \mathrm{~min} 21 \mathrm{~s}$ to complete a mile of the course;
- $287 \mathrm{~s}=4 \mathrm{~min} 47 \mathrm{~s}$ to complete a third of a mile;

For a $41 / 3$ mi Long Course

- we add the expected elapsed time over 4 mi to that over $1 / 3 \mathrm{mi} .$. .

Our Boat Shindig on a $41 / 3 \mathrm{mi}$ Course...

$$
\begin{array}{r}
57 \mathrm{~min} 24 \mathrm{~s} \propto \quad 4 \mathrm{mi} \\
+\quad 4 \mathrm{~min} 47 \mathrm{~s} \propto 1 / 3 \mathrm{mi} \\
\hline 62 \mathrm{~min} 11 \mathrm{~s} \propto 41 / 3 \mathrm{mi}
\end{array}
$$

$$
\left\{\begin{aligned}
& t \propto d \text { (on average) } \\
& 14 \mathrm{~min} 21 \mathrm{~s} \propto 1 \mathrm{mi} \\
& \hline 28 \mathrm{~min} 42 \mathrm{~s} \propto 2 \mathrm{mi}(2 \times) \\
& 43 \mathrm{~min} 3 \mathrm{~s} \propto 3 \mathrm{mi}(3 \times) \\
& 57 \mathrm{~min} 24 \mathrm{~s} \propto 4 \mathrm{mi}(4 \times) \\
& 1 \mathrm{~h} 11 \mathrm{~min} 45 \mathrm{~s} \propto 5 \mathrm{mi}(5 \times) \\
& \vdots \\
& \hline 4 \min 47 \mathrm{~s} \propto 1 / 3 \mathrm{mi}(1 / 3 \times) \\
& 9 \min 34 \mathrm{~s} \propto 2 / 3 \mathrm{mi}(2 / 3 \times) \ldots
\end{aligned}\right.
$$

Our Boat Shindig on a $41 / 3 \mathrm{mi}$ Course

And an Elapsed Time of 1 h 2 min 11 s

On Average

- the expected elapsed time for $41 / 3 \mathrm{mi}$ is 1 h 2 min 11 s .

At an Elapsed Time of 1 h 2 min 11

- a time allowance for time-on-time will be the same as for time-on-distance.

Our Boat Shindig on a $41 / 3 \mathrm{mi}$ Course

And an Elapsed Time of 1 h 2 min 11 s

On Average

- the expected elapsed time for $41 / 3 \mathrm{mi}$ is 1 h 2 min 11 s .

At an Elapsed Time of 1 h 2 min 11 s

- a time allowance for time-on-time will be the same as for time-on-distance.
(1) Handicapping as Prediction
- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

For Our Competitor Rhumb Punch where $\Delta g=15 \mathrm{~s} / \mathrm{mi}$

For Time-on-Distance

- for each mile of course the time allowance Δt increases by 15 s ;
- for each additional $1 / 3 \mathrm{mi}$ the time allowance Δt increases by 5 s

For Time-on-Time

- the ratio of Δt to 15 s is equal in proportion to the ratio t to 14 min 21 s
- for each:
- 14 min 21 s of elapsed time t the time allowance Δt increases by 15 s ;
- 4 min 47 s of elapsed time t the time allowance Δt increases by 5 s .

For Our Competitor Rhumb Punch where $\Delta g=15 \mathrm{~s} / \mathrm{mi}$

For Time-on-Distance

- for each mile of course the time allowance Δt increases by 15 s ;
- for each additional $1 / 3 \mathrm{mi}$ the time allowance Δt increases by 5 s .

For Time-on-Time

- the ratio of Δt to 15 s is equal in proportion to the ratio t to 14 min 21 s
- for each
- 14 min 21 s of elapsed time t the time allowance Δt increases by 15 s ;
- 4 min 47 s of elapsed time t the time allowance Δt increases by 5 s .

For Our Competitor Rhumb Punch where $\Delta g=15 \mathrm{~s} / \mathrm{mi}$

For Time-on-Distance

- for each mile of course the time allowance Δt increases by 15 s ;
- for each additional $1 / 3 \mathrm{mi}$ the time allowance Δt increases by 5 s .

For Time-on-Time

- the ratio of Δt to 15 s is equal in proportion to the ratio t to 14 min 21 s .
- for each:
- 14 min 21 s of elapsed time t the time allowance Δt increases by 15 s ;
- 4 min 47 s of elapsed time t the time allowance Δt increases by 5 s .

For Our Competitor Rhumb Punch where $\Delta g=15 \mathrm{~s} / \mathrm{mi}$

For Time-on-Distance

- for each mile of course the time allowance Δt increases by 15 s ;
- for each additional $1 / 3$ mi the time allowance Δt increases by 5 s .

For Time-on-Time

- the ratio of Δt to 15 s is equal in proportion to the ratio t to 14 min 21 s .
- for each:
- 14 min 21 s of elapsed time t the time allowance Δt increases by 15 s ;
- 4 min 47 s of elapsed time t the time allowance Δt increases by 5 s .

For Our Competitor Rhumb Punch where $\Delta g=15 \mathrm{~s} / \mathrm{mi}$

For Time-on-Distance

- for each mile of course the time allowance Δt increases by 15 s ;
- for each additional $1 / 3$ mi the time allowance Δt increases by 5 s .

For Time-on-Time

- the ratio of Δt to 15 s is equal in proportion to the ratio t to 14 min 21 s .
- for each:
- 14 min 21 s of elapsed time t the time allowance Δt increases by 15 s ;
- 4 min 47 s of elapsed time t the time allowance Δt increases by 5 s .

For Our Competitor Rhumb Punch using Time-on-Distance

A $41 / 3 \mathrm{mi}$ course yields a time allowance of 65 s .

$$
+\begin{array}{rr}
\Delta t \propto & \propto \text { (time-on-distance) } \\
\begin{array}{r}
60 \mathrm{~s} \propto \\
5 \mathrm{~s} \propto 1 / 3 \mathrm{mi} \\
65 \mathrm{~s} \propto 41 / 3 \mathrm{mi}
\end{array} & \begin{aligned}
\Delta \mathrm{s} \propto 1 \mathrm{mi} & \\
\hline 30 \mathrm{~s} \propto 2 \mathrm{mi} & (2 \times) \\
45 \mathrm{~s} \propto 3 \mathrm{mi} & (3 \times) \\
\frac{60 \mathrm{~s} \propto}{} \propto 4 \mathrm{mi} & (4 \times) \\
5 \mathrm{~s} \propto 1 / 3 \mathrm{mi} & (1 / 3 \times)
\end{aligned}
\end{array}
$$

For Our Competitor Rhumb Punch using Time-on-Time

An elapsed time of 1 h 2 min 11 s yields a time allowance of 65 s .

$$
+\begin{array}{r}
60 \mathrm{~s} \propto 57 \min 24 \mathrm{~s} \\
\frac{5 \mathrm{~s} \propto 4 \min 47 \mathrm{~s}}{65 \mathrm{~s} \propto 62 \min 11 \mathrm{~s}}
\end{array}\left\{\begin{aligned}
& \Delta t \propto t \text { (time-on-time) } \\
& \frac{15 \mathrm{~s} \propto 14 \min 21 \mathrm{~s}}{30 \mathrm{~s} \propto 28 \min 42 \mathrm{~s}}(2 \times) \\
& 45 \mathrm{~s} \propto 43 \min 3 \mathrm{~s}(3 \times) \\
& \frac{60 \mathrm{~s} \propto 57 \min 24 \mathrm{~s}}{5 \mathrm{~s} \propto 4 \min 47 \mathrm{~s}}(4 \times) \\
&(1 / 3 \times)
\end{aligned}\right.
$$

For Our Competitor Rhumb Punch

On average $\Delta t, t$ and d vary in lockstep.

$$
\begin{array}{r}
60 \mathrm{~s} \propto 57 \min 24 \mathrm{~s} \propto 4 \mathrm{mi} \\
+\quad 5 \mathrm{~s} \propto 4 \min 47 \mathrm{~s} \propto 1 / 3 \mathrm{mi} \\
\hline 65 \mathrm{~s} \propto 62 \min 11 \mathrm{~s} \propto 41 / 3 \mathrm{mi}
\end{array}
$$

$\Delta t \propto \quad t$	\propto	d
$15 \mathrm{~s} \propto 14 \mathrm{~min} 21 \mathrm{~s} \propto$	1 mi	
$30 \mathrm{~s} \propto 28 \mathrm{~min} 42 \mathrm{~s} \propto$	2 mi	$(2 \times)$
$45 \mathrm{~s} \propto 43 \mathrm{~min} 3 \mathrm{~s} \propto$	3 mi	$(3 \times)$
$60 \mathrm{~s} \propto 57 \mathrm{~min} 24 \mathrm{~s} \propto 4 \mathrm{mi}$	$(4 \times)$	
$5 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s} \propto 1 / 3 \mathrm{mi}$	$(1 / 3 \times)$	

For an actual race which departs from the average, time allowances are dependent on either time or distance depending on the style of handicapping...

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth
- every minute of elapsed time increases the time allowance by about 1 s .
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s .
- to be certain of the win, we must beat Rhumb Punch by 1 min 3 s

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth
- every minute of elansed time increases the time allowance by about 1 s
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s
o to be certain of the win, we must beat Rhumb Punch by 1 min 3 s

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth.
- every minute of elapsed time increases the time allowance by about 1 s .
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s .
- to be certain of the win, we must beat Rhumb Punch by 1 min 3s.

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth.
- every minute of elapsed time increases the time allowance by about 1 s .
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s .
- to be certain of the win, we must beat Rhumb Punch by 1 min 3 s .

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth.
- every minute of elapsed time increases the time allowance by about 1 s .
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s .
- to be certain of the win, we must beat Rhumb Punch by 1 min 3 s .

For Our Competitor Rhumb Punch using Time-on-Time

Were we to take exactly one hour to finish a race:

- the time allowance of 60 s for 57 min 24 s would fall short;
- the time allowance of 65 s for 62 min 11 s would overshoot;
- we need about two and half minutes worth of additional time allowance to round out the 57 min 24 s worth.
- every minute of elapsed time increases the time allowance by about 1 s .
- $2.5 \mathrm{~s} \propto 2.5 \mathrm{~min}$, approximately.
- this would give a total time allowance of about 62.5 s .
- to be certain of the win, we must beat Rhumb Punch by 1 min 3 s .

A Time Allowance Table

Shindig	$14: 21$
the Professor	+3
Rhumb Punch	+15
Mechanical Drone	-27
Winged Elephant	-51
Hurricane	$-2: 12$

Shindig		Pr +	RP +	MD -	WE	Hu
$1 / 3$	$4: 47$	1	5	9	17	44
$2 / 3$	$9: 34$	2	10	18	34	$1: 28$
1	$14: 21$	3	15	27	51	$2: 12$
2	$28: 42$	6	30	54	$1: 42$	$4: 24$
3	$43: 03$	9	45	$1: 21$	$2: 33$	$6: 36$
4	$57: 24$	12	$1: 00$	$1: 48$	$3: 24$	$8: 48$
5	$1: 11: 45$	15	$1: 15$	$2: 15$	$4: 15$	$11: 00$
6	$1: 26: 06$	18	$1: 30$	$2: 42$	$5: 06$	$13: 12$
7	$1: 40: 27$	21	$1: 45$	$3: 09$	$5: 57$	$15: 24$
8	$1: 54: 48$	24	$2: 00$	$3: 36$	$6: 48$	$17: 36$
9	$2: 09: 09$	27	$2: 15$	$4: 03$	$7: 39$	$19: 48$

An Expanded Time Allowance Table

Shindig		Pr +	RP +	MD		
		-	WE			
-	Hu -					
$1 / 3$	$4: 47$	1	5	9	17	44
$2 / 3$	$9: 34$	2	10	18	34	$1: 28$
1	$14: 21$	3	15	27	51	$2: 12$
$11 / 3$	$19: 08$	4	20	36	$1: 08$	$2: 56$
$12 / 3$	$23: 55$	5	25	45	$1: 25$	$3: 40$
2	$28: 42$	6	30	54	$1: 42$	$4: 24$
$21 / 3$	$33: 29$	7	35	$1: 03$	$1: 59$	$5: 08$
$22 / 3$	$38: 16$	8	40	$1: 12$	$2: 16$	$5: 52$
3	$43: 03$	9	45	$1: 21$	$2: 33$	$6: 36$
$31 / 3$	$47: 50$	10	50	$1: 30$	$2: 50$	$7: 20$
$32 / 3$	$52: 37$	11	55	$1: 39$	$3: 07$	$8: 04$
4	$57: 24$	12	$1: 00$	$1: 48$	$3: 24$	$8: 48$
$41 / 3$	$1: 02: 11$	13	$1: 05$	$1: 57$	$3: 41$	$9: 32$
$42 / 3$	$1: 06: 58$	14	$1: 10$	$2: 06$	$3: 58$	$10: 16$

5	$1: 11: 45$	15	$1: 15$	$2: 15$	$4: 15$	$11: 00$
$51 / 3$	$1: 16: 32$	16	$1: 20$	$2: 24$	$4: 32$	$11: 44$
$52 / 3$	$1: 21: 19$	17	$1: 25$	$2: 33$	$4: 49$	$12: 28$
6	$1: 26: 06$	18	$1: 30$	$2: 42$	$5: 06$	$13: 12$
$61 / 3$	$1: 30: 53$	19	$1: 35$	$2: 51$	$5: 23$	$13: 56$
$62 / 3$	$1: 35: 40$	20	$1: 40$	$3: 00$	$5: 40$	$14: 40$
7	$1: 40: 27$	21	$1: 45$	$3: 09$	$5: 57$	$15: 24$
$71 / 3$	$1: 45: 14$	22	$1: 50$	$3: 18$	$6: 14$	$16: 08$
$72 / 3$	$1: 50: 01$	23	$1: 55$	$3: 27$	$6: 31$	$16: 52$
8	$1: 54: 48$	24	$2: 00$	$3: 36$	$6: 48$	$17: 36$
$81 / 3$	$1: 59: 35$	25	$2: 05$	$3: 45$	$7: 05$	$18: 20$
$82 / 3$	$2: 04: 22$	26	$2: 10$	$3: 54$	$7: 22$	$19: 04$
9	$2: 09: 09$	27	$2: 15$	$4: 03$	$7: 39$	$19: 48$
$91 / 3$	$2: 13: 56$	28	$2: 20$	$4: 12$	$7: 56$	$20: 32$
$92 / 3$	$2: 18: 43$	29	$2: 25$	$4: 21$	$8: 13$	$21: 16$

Refining Approximations for Time Allowances

Shindig	$\Delta t \propto t$ Approxi	ions
the Professor	$1 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s}$	$1 \mathrm{~s} \propto 5 \mathrm{~min}$
Rhumb Punch	$5 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s}$	$1 \mathrm{~s} \propto 1 \mathrm{~min}(\mathrm{via} 5 \mathrm{~s} \propto 5 \mathrm{~min})$
Mechanical Drone	$9 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s}$	$1 \mathrm{~s} \propto 32 \mathrm{~s}($ via $3 \mathrm{~s} \propto 1 \mathrm{~min} 36 \mathrm{~s}$)
Winged Elephant	$17 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s}$	$4 \mathrm{~s} \propto 1 \mathrm{~min} 7 \mathrm{~s} \quad 2 \mathrm{~s} \propto 33.5 \mathrm{~s} \quad 1 \mathrm{~s} \propto 17 \mathrm{~s}$
Hurricane	$44 \mathrm{~s} \propto 4 \mathrm{~min} 47 \mathrm{~s}$	$11 \mathrm{~s} \propto 1 \mathrm{~min} 12 \mathrm{~s} \quad 8 \mathrm{~s} \propto 52.5 \mathrm{~s} \quad 1 \mathrm{~s} \propto 7 \mathrm{~s}$

(1) Handicapping as Prediction

- Introduction to Handicapping
- Corrected Time
- Squeezing Down the Formulas
(2) Using Handicaps on the Water
- Sample Boats
- Introduction to Time Allowances
- Reckoning Time Allowances from Our Boat's Point of View

Wrap Up

- modern handicapping can be highly predictive of performance.
- in club racing we don't take advantage of the precision offered.
- the GPH is the one true single-factor handicap.
- even when we don't realize we are using it.
- time allowances are easily reckoned for time-on-time.

